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Endoplasmic reticulum bodies: solving the insoluble
Eliot M Herman
Plant cells produce and accumulate insoluble triglycerides,

proteins, and rubber that are assembled into inert, ER-derived

organelles broadly termed as ER bodies. ER bodies appear to

originate from tubular ER domains that are maintained by

cytoskeletal interactions and integral ER proteins. ER bodies

sequestering insoluble substances usually are transferred to

the vacuole but sometimes remain as cytoplasmic organelles.

Some otherwise soluble ER-synthesized proteins are

converted to insoluble aggregates to produce ER bodies for

transfer to the vacuole. This process constitutes an alternate

secretory system to assemble and traffic transport-

incompetent insoluble materials.
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Insoluble problems, an introduction
Many substances accumulated by plants, particularly in

seeds, are insoluble and present a range of problems for

their assembly within an aqueous environment and their

transfer to locations distal from their site of synthesis.

These insoluble materials are often reserve metabolites

such as oil, protein, and rubber. They are produced by the

endoplasmic reticulum and marshaled into ER-derived

organelles, termed ER bodies. ER bodies may exist as

cytosolic organelles but more often function to transport

insoluble substances to vacuoles. Insoluble protein

assemblies are a means to concentrate large masses of

specialized proteins delivered to the vacuole as enzyme

precursor or storage proteins. Recent data have given a

new perspective on the ER and ER bodies as a plant

specific alternate secretory pathway that permits plant

cells to produce and use insoluble substances.

Domains of the soluble and the insoluble
The ER is a dynamic pleomorphic organelle that is the

site of synthesis of soluble secretory proteins, the endo-
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membrane’s own proteins, and lipids, as well as insoluble

triglyceride (TAG), protein, and rubber. Electron micros-

copy shows that the plant ER is a patchwork of structu-

rally diverse and functionally distinct domains

interconnected by a contiguous lumen [1]. The ER

comprises cisternal (cER) and tubular ER (tER), the

nuclear envelope, plasmadesmata, and a diverse group

of ER-derived organelles containing accreted substances,

such as oil bodies (OB), protein bodies (PB), protein

precursor vesicles/precursor accumulation vesicles

(PPV, or PAC), and rubber bodies (RB) [2]. Electron

microscopic images of seed ER using thick section heavy

metal impregnation [3] and freeze fracture [4] (Figure 1A

and B) show interconnected cER sheets and tER projec-

tions. The seed tER forms both the OBs (Figure 1A–C)

and PBs (Figure 2) and mediates the production of cargo

vesicles carrying soluble secretory proteins targeted to the

Golgi and on to the storage vacuole or cell surface.

Cytoskeleton frames ER body production
Animal cell tER aligns with the microtubule cytoskele-

ton, which specifies ER morphology [5]. Disruption of

microtubules produces large-scale morphological changes

in tER. Components that specify tER interaction with

microtubules include the microtubule motor kinesin-1

that drives changes in tER morphology. The tER is

connected to the microtubule network by CLIMP-63, a

cytoskeleton-linking ER membrane protein that is

excluded from the contiguous nuclear envelope [6]. Ot-

her proteins that have cytoskeleton interactions with the

tER network include an EF hand Ca2+ binding protein

p22 [7], huntingtin, and kinectin [5].

Plant cell tER aligns with the actin cytoskeleton [8],

which suggests its role in establishing of the tER

morphology. Actin depolymerization does not disrupt

the pre-existing ER structure, only its further modifi-

cation [9��]. The actin cytoskeleton mediates the local-

ization and transport of RNA transcripts targeted to the

tER. For example rice storage protein transcripts exhibit

differential distribution. Transcripts encoding glutelin, a

soluble vacuolar storage protein, are present on the cER,

while transcripts encoding the insoluble prolamin storage

protein are associated with tER [10]. Transcripts encod-

ing prolamin move unidirectionally on the cytoskelton to

the tER responsible for forming PBs; trafficking is dis-

rupted by cytochalasin D and latrunculin B [11]. The

prolamin transcripts bind to a cytoskeletal-associated

protein, OsTudor-SN. Silencing the OsTudor-SN

repressed both prolamin protein synthesis and transcript

abundance, decreasing the number of PBs assembled

[12��]. These data indicate that translation of prolamin
www.sciencedirect.com
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Figure 1

The formation of soybean oil bodies (OB) by the tubular ER (tER) as observed by freeze fracture replica (A and B) [3] and conventional thin-section electron

microscopy (C) is shown. Numerous tER extensions radiate from the cisternal ER (cER) with the OBs assembled and released from the tip of tER (arrows).
transcripts occurs at site of protein accumulation so that

the specific receptors that recognize tER domain specific

transcripts and direct the synthesis and assembly of these

hydrophobic proteins at the site of PB ontogeny may be
Figure 2

Maize zeins and PBs possess a complex structure shown in this electron

micrograph with the more hydrophobic zeins in the PB matrix interior

and the more hydrophilic zeins in the peripheral matrix. While most if not

all other PBs are assembled coordinately with the matrix protein

synthesis, maize PBs are assembled by first synthesizing the hydrophilic

gamma zein and then later synthesizing the hydrophobic alpha zeins.

The co-assembly of the proteins results in PB formation with

subdomains containing different zeins. The maize zein PB remains

attached to the ER as a subdomain. Micrograph provided by Dr Brian

Larkins, Univ of Arizonia.

www.sciencedirect.com
discovered. Further experiments are needed to establish

whether this path for PB ontogeny extends to other ER

bodies. Figure 3 illustrates the interpreted relationship

between the cytoskeleton, transcripts, tER, and ER

bodies.

Tube bending specifies tER morphology
A family of proteins, the reticulons, has been identified to

provide the force to bend the ER into tubes [13]. Reti-

culon–reporter fusions expressed in plant cells localize in

the tER. Reticulons contain two trans-membrane

domains separated by a cytoplasmic facing loop. The

trans-membrane domains form a loop asymmetrically

embedded in the ER membrane that imposes a curvature

so that the inner half of the ER bilayer bends more than

the outer half creating the tER conformation. The Ara-
bidopsis genome contains 21 members of the reticulon

family [14��]. Sixteen of the Arabidopsis reticulons possess

a consensus ER di-lysine retention/retrival sequence [15].

There are three distinct types of reticulon proteins [14��],
which suggests that they serve specialized functions

during tER and ER body formation. Consistent with this

suggestion, overexpression of one Arabidopsis reticulon

massively remodels the ER by increasing the distribution

and constrictions of the tER [16��].

Separating oil from ER
The storage of TAG oil reserves has antecedents in

unicellular prokaryotic and eukaryotic organisms [17].

The template for OB ontogeny has persisted throughout

evolution, with the plant, animal, and fungal kingdoms

each producing ER-derived lipid bodies or OBs consist-

ing of a TAG core encased in a phospholipid monolayer

that often is embedded with one or more unique surface

proteins. Triglycerides are synthesized by ER-localized

diacylglyceride transferase (DGAT), which in plants
Current Opinion in Plant Biology 2008, 11:672–679
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Figure 3

An interpretation of the morphology of the key features of a tER segment assembling an ER body is shown. The tER aligns with an actin cytoskeleton

framework that defines the morphology of the tER segment as well as functioning as a transport track to move specific transcripts to tER. Not shown in

the diagram are reticulons, the tER integral membrane proteins that define the structure of the tER. Coupled translation of the ER body specific

transcripts and accretion of triglyceride, protein, or rubber cargo forms the ER body. The ER body accumulates the accreted insoluble until a

critical size is attained after which it detaches from the ER releasing a mature ER body that comprises a cargo core encased in an ER-derived

membrane. The ER body membrane is either an ER bilayer with attached ribosomes when the organelle has a protein cargo, while the ER body

membrane is a phospholipid monolayer that may include ER body specific membrane proteins when the cargo is triglyceride or rubber. The

absence of ribosomes on the OB or rubber body membrane is the consequence of the monolayer membrane that will exclude ribosome-binding

proteins that require a bilayer structure.
exists in two distinct forms, DGAT1 and DGAT2 [18].

The seed TAG core co-assembles with surface proteins

termed oleosins, which have a three-domain structure and

a conserved 70+ amino acid hydrophobic central domain

[19]. Other minor oil body constituents include caleosin

[20] and steroleosin [21], whose function and ubiquity

remain to be established. ER-synthesized TAG accretes

to form membrane surface patches [22] that have been

visualized during lipid body ontogeny in animal cells

[23�]. Electron microscopy revealed that OBs originate

from the tER’s distal tip by splitting the bilayer, with the

OB forming from the cytoplasmic half of the ER bilayer.

Recent studies have begun to define the molecular pro-

cesses that underlie the microscopic observations of OB

ontogeny. Tung seed DGAT 1 and 2 have been localized

to different ER domains using epitope-tagged proteins

expressed in BY2 cells [24��]. DGAT1 possesses seven

trans-membrane domains, while DGAT2 mimics oleosin

structure by having a single trans-membrane loop con-

sisting of two trans-membrane domains, with the carboxy-

terminal domain facing the cytoplasm. The single loop

domain of DGAT2 could orient in the tER, consistent
Current Opinion in Plant Biology 2008, 11:672–679
with its discrete localization in BY2 cells. Oleosin is

cotranslationally inserted into ER, although the oleosin

central hydrophobic domain is physically too large to

stably insert in an ER bilayer. Modification/expression

experiments have indicated that oleosin must have a

‘relaxed’ cotranslational insertion conformation [25],

where the hydrophobic domain lies within the core of

the tER bilayer. If the DGAT2 and oleosin transcripts

were directed at the same tER domain, this would result

in co-synthesis of TAG and oleosin. This could result in a

phase separation of the TAG from the ER and partition of

oleosin into the incipient OB by hydrophobic inter-

actions. Caleosin has been speculated as having a role

in the formation and mobilization of OBs. In maturing

barley seeds, caleosin is accumulated coordinately with

TAG, but in a microscopic assay oleosin and caleosin have

a different, somewhat overlapping distribution [26].

These results suggest that caleosin may play a transient

role in the formation of OBs, but not necessarily become

incorporated into the mature OB membrane. One of the

curious features of DGAT2, caleosin, and oleosin is that

each has a single membrane insertion loop, but of varying

length (oleosin > caleosin > DGAT2). This suggests
www.sciencedirect.com
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that one protein could be displaced by another via

protein–TAG hydrophobic interactions, with caleosin

playing a role to facilitate assembly. Interestingly, Tung

seed DGAT2 penetrates the ER membrane with a small

loop in the lumen that connects the two trans-membrane

domains, whereas caleosin and oleosin apparently do not

penetrate the membrane. This structural feature would

facilitate DGAT2 displacement from the incipient oil

body by TAG/protein hydrophobic affinity.

One test of this concept is to suppress oleosin and

examine the effect on OB ontogeny. One can predict

that without oleosin to displace other proteins, TAG will

remain bound to tER proteins and aberrant OBs could

result. Oleosin RNAi and insertion mutants have been

studied in Arabidopsis [27��] and soybean [28��] and result

in the accumulation of giant oil bodies in mature seeds.

This result supports the proposal that oleosins impede

coalescence during desiccation. In immature seeds, ends

of the tER in a soybean oleosin RNAi plant produce

50 nm micro OBs that form increasingly larger and then

giant OBs, demonstrating that oleosins are important in

OB ontogeny [28��]. Soybean oleosin RNAi also results in

the formation an ER/OB complex enriched in caleosin, a

result that indicates this protein is trapped by production

of aberrant OBs. Caleosin has a cytoplasmic EF hand Ca2+

binding domain that may be the functional equivalent of

the EF hand Ca2+ binding protein, p22, involved in

animal tER–cytoskeleton interactions. Oleosin silencing,

with the resulting increase in caleosin, suggests that

additional protein factors are necessary to produce seed

oil bodies.

Insoluble proteins and ER bodies
Plants make broad, although limited use, of protein

accretion in the ER to produce PBs that sequester storage

proteins precursors [29], cysteine proteases and other

enzymes, and cereal prolamins. Once formed most PBs

are transferred to the vacuole by a direct ER–vacuole

trafficking (ERVT) route that bypasses the Golgi [2].

This pathway gives plants the capacity to traffic insoluble

transport-incompetent protein accretions. While trigly-

cerides and rubber polymers are hydrophobic and there-

fore self-accreting, with the exception of cereal prolamin

storage proteins other PB proteins are soluble and should

be transport competent. Yet, plants have evolved post-

synthetic processes that assure some secretory proteins

aggregate to produce PBs that are transferred to the

vacuole via ERVT.

The insoluble protein matrix
Although considered typical PBs, the hydrophobic cereal

prolamins may actually be more of an exception among

the proteins in ER bodies. Prolamins accrete in the ER

with the assistance of ER chaperones, including BiP and

PDI. Wheat gliadin monomers assemble into large oligo-

mers in the ER by forming disulfide bridges between the
www.sciencedirect.com
monomers before accreting in PBs that are subsequently

transferred to the vacuole by autophagy [30]. Maize

prolamin PBs have a complex structure with four distinct

types of proteins, a-,b-, g-, d-zeins, differentially distrib-

uted into different domains within the PB. The 22 kDa a-

zeins interact with a lumen-facing ER membrane protein

identified by the Floury1 mutation, Fl1 [31��], may cha-

perone these proteins to facilitate their spatial distri-

bution within the PB assuring that 22 kDa a-zeins are

localized in the PB interior as a ring around the hydro-

phobic 19 kDa a-zein core. In the absence of Fl1, the

22 kDa zeins are randomly distributed in the PB matrix

showing that the Fl1, protein influences in the assembly

of the PBs. Maize PBs form at the distal end of tER, but

unlike other ER bodies the maize PBs remain attached to

the ER [32].

Do PBs avoid quality control?
For most eukaryotes the accretion of proteins in the ER,

whether from genetic disease inducing the formation of

cellular structures such as Russell Bodies [33] or from

other stresses, results in cellular responses to mitigate the

problems produced by accumulations of accreted

proteins. This response, termed as quality control (QC)

and unfolded protein response (UPR), leads to a cascade

of events that result in degradation of the accreted protein

by retrograde transport from the ER [34]. In an alternate

disposal mechanism, ER accreted protein is transferred to

the lysosome/vacuole by either endomembrane pro-

gression through the Golgi, if transport competent, or

more often by autophagy by lysosomes/vacuoles of the

ER-included protein accretion, where it is degraded.

Plant PBs appear to be an exception to QC/UPR, but

not necessarily for vacuolar degradation. The accretion of

prolamins does not result in protein degradation by QC

and UPR, although these mechanisms are present in

seeds and function with the induction of ER-stress

proteins during the synthesis of zeins and [35] other

protein accretions. Two maize starchy endosperm (opa-

que) mutants that induce UPR have been shown to result

from malformed zeins; one has an altered signal peptide

sequence [36] and the other a frame shift mutation that

caused a nonsense protein [37��]. These mutants show

that wild-type zeins receive a pass from QC/UPR while

malformed zeins do not. Wheat and rice prolamin PBs are

transferred to the vacuole by ERVT where the storage

protein accumulates. By contrast, zein PBs are transferred

to the vacuole in transgenic seed PSVs and are degraded

[38].

Making the soluble insoluble and then the
insoluble soluble
PB bodies are used in plants as a means to deliver

proteases and seed storage protein precursors to the

vacuole by ERVT. What is remarkable about these

classes of protein is that they are soluble, transport-

competent proteins that possess vacuolar-targeting
Current Opinion in Plant Biology 2008, 11:672–679
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sequences to traffic them, using endomembrane pro-

gression by the ER–Golgi–vacuole route. In addition to

these proteins, a large number of soluble engineered

reporter and transgene proteins can be induced to accrete

by adding an ER-retention sequence K/HDEL [39]. The

addition of K/HDEL retards protein progression from the

ER [40]. In many instances these proteins will be accreted

in PBs, where their posttranslational stability is enhanced

[41]. This raises an interesting biological question: why

are some soluble transport-competent proteins converted

to insoluble transport-incompetent proteins that follow a

secondary ERVT route to the vacuole. Unfortunately,

there are few answers, but existing data provide hints and

directions for future inquiry.

Soluble vacuolar protein precursors that are known to be

sequestered in PBs include cysteine proteases: a RD21,
Figure 4

A diagrammatic representation of the ontogeny of the various types of ER b

encompasses all of the possible paths and interactions supported by publis

various forms of PB, prolamin storage protein, precursor accumulation vesicle

subsequently are transferred to the vacuole by several different routes includ

addition of Golgi-derived membrane proteins. Except for oil bodies the dive

content of the ER bodies to the vacuole.
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vacuolar processing enzyme [42], a family of KDEL-

tailed proteins [43], and storage protein precursors

[44,45] that are components of the protein storage vacuole

crystalloid. For example, cysteine protease precursors

possess vacuole-targeting sequences within the precursor

domain, which indicates they should be recognized by the

Golgi-localized vacuolar-targeting receptor if the protein

moved to the vacuole instead of being diverted into PBs

and ERVT [2]. That these proteins form PBs for ERVT is

one possible hint of function. Both cysteine proteases and

crystalloid proteins need to be delivered at high concen-

trations, the proteases to mobilize reserve proteins or to

turn over cellular constituents after stress and for the

crystalloid proteins to form a high concentration to

enhance the formation of a storage vacuole matrix

subdomain. By accreting a single type of protein into

PPV/PAC PBs and delivering the protein as large
odies and their trafficking within a plant cell is shown. The diagram

hed data. OBs formed by the tER are released into the cytoplasm. The

s (PAC), and protease precursor vesicles (PPV) are formed by the ER and

ing autophagy, binding to the tonoplast, or binding to the tonoplast after

rse ER body forms primarily share a similar function to transfer insoluble

www.sciencedirect.com
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aggregates, there is no downstream need for the proteins

to self-aggregate in the vacuole matrix. For crystalloids

that occupy a substantial portion of the seed PSV matrix,

the delivery of already accreted crystalloid protein places

concentrated and assembled protein assemblies into the

vacuole [46]. The presence of membrane and tonoplast

proteins in crystalloids [47] indicates that deposition in

the PSV occurs by autophagy.

PAC PBs is another variant that transfers storage proteins

directly to the vacuole as large accretions [44,45], perhaps

with some contribution from the Golgi [48]. The balance

of a soluble, as compared with an accreted, insoluble

version of the same protein, presents a number of inter-

esting biological questions. For example, are the sites of

synthesis and assembly within the ER network different,

depending on the fate of the protein? There are possible

test models: soybean mutants and transgenics that lack

conglycinin storage proteins accrete a portion of the

proglycinin storage proteins into PBs [49,50]. Proglycinin

PBs are not present in the wild type, which indicates not

only that the lack of conglycinin proteins promotes the

formation of stable PBs, but also that these PBs are

composed primarily of proglycinin. This indicates that

proglycinin is diverted from endomembrane progression

to form PBs. Curiously by introgressing another accreted

protein, GFP-KDEL in the conglycinin knockdown

background impedes the accretion of the proglycinin with

the result that it is restored to be transport competent and

progresses to the vacuole for processing [51��]. This may

suggest that there are protein or chaperone cofactor pre-

ferences to accrete one protein in favor of another with

the result that accreting one protein, GFP-KDEL,

impedes the accretion of another protein, proglycinin

[51��]. Another model of soluble and insoluble variants

of a protein is zeolin, a fusion protein made of the vicilin,

phaseolin, and g-zein [52]. Zeolin accretes by intramole-

cular disulfide bonds and forms PBs, while a variant with

mutated sites that cannot form intermolecular disulfide

bonds is transport competent [53��]. Models such as these

will prove useful to understand how otherwise soluble,

transport-competent proteins are rendered insoluble and

transport incompetent.

A solution for the insoluble?
It seems likely that the paradigm of PB formation by

rendering otherwise transport-competent proteins inso-

luble will prove to be widely distributed in plants. Few of

the more than half million plus plant species have been

subjected to any cell biological analysis. One hint is the

presence of ER bodies in plants that is visualized by

expression of green fluorescent protein with a KDEL

carboxy-terminal sequence illustrating that there are

resident populations of ER bodies in plant cells [54] with

unknown functions. This approach could be more widely

applied and used to test for the diversity of ER bodies

resident in plant cells during growth and development.
www.sciencedirect.com
That chemical stress on the ER will induce the formation

of ER bodies is well documented, especially for PBs, and

there is now some evidence to indicate that abiotic stress

induces ER body formation [42]. Abiotic stress also

induces remodeling of the ER, so there is a potential

linkage between the effects on ER and ER body for-

mation [42]. With so many types of stress, species varia-

bility, nutrient source–sink relationships, and storage

compounds, there will probably be many new discoveries

about how plants deploy ER bodies and their insoluble

contents. Crucial to these discoveries will be an under-

standing of how plants synthesize and/or convert sub-

stances to an insoluble state. By understanding the

ontogeny of ER bodies and its relationship to ER func-

tion, the biological and physiological processes that

induce plants to use ER bodies and the ERVT pathway

can be clarified (summary Figure 4).
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